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Abstract. The symmetry implantation in the tight-binding method is analysed. A transparent
algorithm is proposed to calculate eigenvalues and eigenvectors with automatic assignation by the
complete set of conserved quantum numbers. For crystals, the energy bands are obtained with no
summation over the lattice, while the eigenvectors are symmetry-adapted generalized Bloch states.
The method is applied to the electronic π -bands of single-wall carbon nanotubes: together with the
dispersion relations, their assignation by the full symmetry (line group) quantum numbers (linear,
helical and angular momenta and parities) is performed and the corresponding symmetry-adapted
eigenstates are found. It is argued that these novel quantum numbers prevent conductivity in all
but armchair tubes.

1. Introduction

The tight-binding approach is one of the most frequently used and developed techniques in
research on complex molecular and especially solid state systems [1]. Although based on
deep (but a posteriori justified) physical approximations (e.g. one-particle concept, short-
range interactions), its efficiency promotes it as the first-choice tool in almost all energy
band calculations, frequently immediately giving satisfactory final results. Incorporation of
symmetry in such calculations is important: besides the reduction of the calculations, the
obtained assignation of the eigenenergies by the conserved quantum numbers enables further
qualitative analyses utilizing selection rules.

The aim of this paper is to give a complete formalism of the symmetry implantation within
the tight-binding method. Besides the formal rigorousness enlightening the whole context and
scope of applicability, the benefits of this approach are that from the beginning it uses the full
symmetry group (still allowing us to restrict it to a subgroup for some particular needs), and
results in a precisely defined minimal algorithm. The full group treatment yields assignation
by the maximal set of conserved quantum numbers, enabling usage of all possible selection
rules. The mentioned minimality refers both to the set of necessary input data and to the
procedure itself: only the minimal subsystem, i.e. the atoms which generate the whole system
by the action of the group, is used (e.g. not the elementary cell of a crystal, but its basic domain
which by the total space group generates the crystal; this is a single atom in the case of carbon
nanotubes [2]).

Let S be the system with the symmetry group G. The set of group transformations
(rotations, reflections, translations, . . . ) leaving an atom of S, say x, invariant form a stabilizer
subgroup of x. The other transformations of G map x into other atoms forming a subsystem
of S called the orbit of x. Thus, the group action divides the system into disjoint orbits.
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Within the tight-binding model, each atom contributes to the total state space by its own
space; this, so-called interior, space is usually of low dimension and depends on the problem
considered. For example, this is the space spanned by the (several) relevant atomic orbitals
when electronic structure is studied, the three-dimensional space of the ion displacements from
the stable configuration in studies of vibrations, the spin space when magnons are looked for
etc. Due to symmetry, all the atoms of the same orbit introduce the same interior space into
the total space. While the conformation of the system is obviously completely defined when
one (arbitrary) atom from each orbit, the orbit representative, is given, the interior spaces of
these representatives completely determine the total state space of the considered tight-binding
model. It is then intuitively plausible to expect that the complete calculations can be reduced
to the interior spaces of orbit representatives only.

We realize this task rigorously in section 2, using modified group projector technique [3]
for induced representations (sketched in subsection 2.1). The analysis of the structure of the
total state space (in subsection 2.2) shows that it is the sum of the induced spaces, thus requiring
further development of the technique. The transfer operators, generalizing the Bloch procedure
for translational periodicity to the full symmetry group, interrelate total space with the orbit
representative subspace. This strongly affects the structure of the Hamiltonian, so that its
eigenvalue problem can be completely solved using part of the orbit representative space only,
namely the range of the modified projector. To illustrate the main points of the procedure, the
single-wall carbon nanotube (SWCT) electronic bands are found in section 3. The application
of their recently determined full symmetry group [4] within the proposed method results in the
simple derivation of the dispersion relations (given in table 2), automatically assigned by the
complete set of quantum numbers: in addition to the linear (or helical) and angular momenta
commonly used [5, 6], the parities are introduced. The main characteristics of the presented
method are summarized in section 4, where also some general consequences of the novel parity
quantum numbers in physics of nanotubes are discussed.

2. Tight-binding Hamiltonian in the multi-orbit induced spaces

Introducing adjusted notation, we start with a reminder on the necessary notions of the modified
group projector technique [3]. Then these results are generalized to the multi-orbit case, which
is sufficient to treat any tight-binding problem.

2.1. Reminder on the modified group projector technique for induced representations

In the state space S = SD let the group act by the representation D(G) decomposing onto
the irreducible components D(µ)(G) of dimension |µ| as D(G) = ⊕µaµD

(µ)(G), i.e. aµ
is its frequency number. The symmetry-adapted or standard basis (SAB) {|µtµm〉|µ; tµ =
1, . . . , aµ; m = 1, . . . , |µ|} is a basis satisfying

D(g)|µtµm〉 =
|µ|∑
m′=1

D
(µ)

m′m(g)|µtµm′〉 ∀g ∈ G. (1)

The SAB can be found by the modified group projector technique (to avoid summation over
group in the commonly used group projector method, which makes it inappropriate for direct
numerical implementations and introduces conceptual problems when non-compact groups
are dealt with). For each irreducible component D(µ)(G) with aµ > 0, the initial space SD
is directly multiplied by the dual H(µ)∗ of the space of D(µ)(G), giving the space carrying

the auxiliary representation �µ(G)
def= D(G) ⊗ D(µ)∗(G). The range R(G(�µ)) of the
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modified group projector G(�µ)
def= 1

|G|
∑

g �
µ(g) is its fixed point subspace. Any basis

{|µtµ〉 | µ = 1, . . . , aµ} of R(G(�µ)) yields the µ-part of the SAB as the partial scalar
products with the standard basis {|µ∗m〉 | m = 1, . . . , |µ|} of H(µ∗):

|µtµm〉 = 〈µ∗m | µtµ〉 tµ = 1, . . . , aµ m = 1, . . . , |µ|. (2)

If the basis is required to be simultaneously a symmetry-adapted and eigenbasis (SAEB) of
the Hamiltonian H (naturally, H commutes with D(G)), the vectors |µtµ〉 should be chosen
as the eigenvectors of H ⊗ Iµ (the identity operator in H(µ∗) is denoted by Iµ).

The method is especially powerful when D(G) has inductive structure D(G) = δ(S ↑
G) ⊗ d(G), where δ(S) is a representation (called interior) of the subgroup S and d(G)

any representation (called exterior) of G. In the problem considered here no external
representation appears, and it should be omitted (i.e. substituted by the trivial representation).
Let Z = {zp | p = 0, . . . , |Z| − 1} (with |Z| = |G|/|S|) be a left transversal of S, i.e.
a chosen set of coset representatives in the partition G = ∑|Z|−1

p=0 zpS of G onto the cosets
zpS. By convention, z0 is the identity element e. Then for any fixed g ∈ G and zp ∈ Z there
are unique s(g, zp) ∈ S and the index p(g) satisfying g = zps(g, zp)z

−1
p(g) (e.g. for g = zp,

s(zp, zp) = zp(zp) = e, i.e. p(zp) = 0). Given the interior representation δ(S) (in the space
Sδ with the basis {|ψ〉 | ψ = 1, . . . , |δ|}), we look for the SAB of the induced representation
D(G) = δ(S ↑ G). The modified procedure deals with two auxiliary representations for
each irreducible component D(µ)(G): �µ(G) = D(G) ⊗ D(µ)∗(G) in the space S�µ =
SD ⊗ H(µ∗) = ⊕pSpγ µ (its operators are �µ(g) = ∑

p E
p

p(g) ⊗ β
µ
p γ

µ(s(g, zp))β
µ†

p(g)), and
its pulled down subgroup representation γ µ(S) = δ(S) ⊗ D(µ)∗(G ↓ S) (the restricted
representation is denoted by ↓) in Sγ µ = Sδ ⊗ H(µ)∗ . The spaces Spγ µ are the replicas of
S0γ µ ≡ Sγ µ . The matrices Ep

q (with vanishing all but pqth element, which equals one) are
used to switch between these spaces; together with the operators βµp = Iδ ⊗D(µ)∗(zp) in Sγ µ
they give the transfer operatorsEp

0 ⊗β
µ
p : Sγ µ → Spγ µ . The modified group projector G(�µ)

is essentially equivalent to the pulled down projector S(γ µ) (onto the fixed point space of
γ µ(S)) by the partial isometry Bµ : Sγ µ → S�µ :

G(�µ) = Bµ{E0
0 ⊗ S(γ µ)}Bµ†

Bµ = 1√|Z|
∑
t

Et
0 ⊗ β

µ
t . (3)

Finally, the basis |µtµ〉0 of the range of S(γ µ) determines the vectors |µtµ〉 = Bµ|µtµ〉0,
giving the SAB |µtµm〉 by (2):

|µtµm〉 = 〈µ∗m|(Bµ|µtµ〉0). (4)

2.2. Multi-orbit systems and tight-binding Hamiltonian

As explained in the introduction, a complex system S (e.g. molecule, crystal, multi-layer,
polymer etc) with the symmetry group G is composed of several subsystemsSP (P = 1, 2, . . .),
each being an orbit of G. Let the corresponding stabilizers and transversals be SP and ZP .
When an atom from a subsystem SP is taken as the orbit representative, the transversal elements
zPp biuniquely map it to all the other atoms of the same orbit. Thus the atoms of the system
are enumerated by the pairs (Pp) of the orbit and the transversal element indices; especially,
the chosen orbit representative is (P0).

In the tight-binding analysis each atom of the orbit SP contributes to the relevant state
space S by δP atomic orbitals |(Pp)ψ〉 (ψ = 1, . . . , δP ) spanning the interior space SpδP ;
the action of the stabilizer element sP on |(Pp)ψ〉 gives the linear combination of the orbitals
from the same atom,

∑δP

φ=1 δ
P
φψ(s

P )|(Pp)φ〉, defining the interior representation δP (SP ) (thus
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δP = |δP (SP )|). The direct sum of the interior spaces gives the total state space S = SD ,
with a basis {|(Pp)ψ〉 | ∀P, p,ψ}. In this space the group acts by its representation D(G),
which is naturally reduced into the orbit subspaces: given the basis vector |(P0)ψ〉, each group
element g is uniquely written in the form zPp s

P with sP ∈ SP , and therefore

D(g)|(P0)ψ〉 = D(zPp )(δ
P (sP )|(P0)ψ〉) =

δP∑
φ

δPφψ(s
P )|(Pp)φ〉. (5)

Since the orbit representative choice is arbitrary, this relation shows that the group action
interrelates the orbitals from the same orbit only. Thus, the direct sum of the interior spaces
over each orbital is an invariant space for D(G). Further, (5) shows that in each of these
invariant subspaces the group action is inductive [7], implying the final conclusion that the
total representation is of multi-orbit induced type, i.e. it is the direct sum D(G) = ⊕PD

P (G)

of several induced representations. Therefore, the results of the previous section are to be
generalized to such a case, with each DP (G) = δP (SP ↑ G) being an induced representation
from the subgroup SP (with the transversal ZP ) and the interior representation δP (Si ).

Considering the SAB only, the generalization of the procedure is straightforward. In fact,
the corresponding auxiliary representation of the modified technique is itself partially reduced
in the inductive spaces S�Pµ :

�µ(G) = D(G)⊗D(µ)∗(G) = ⊕P�
Pµ(G) �Pµ(G) = DP (G)⊗D(µ)∗(G).

Therefore it is pulled down into the orbit representative space Sγ µ = ⊕PSγ Pµ for each
component (orbit) �Pµ independently, and the transfer operator, mapping Sγ µ into S�µ , is
an obvious generalization of (3):

Bµ =
∑
P

BPµ BPµ = 1√
|ZP |

∑
p∈ZP

E
Pp

P 0 ⊗ βPµp (6)

with βPµp = IδP ⊗D(µ)∗(zPp ). Finally, the pulled down projector is

G↓(�µ) =
∑
P

BPµ†
G(�Pµ)BPµ =

∑
P

EP 0
P 0 ⊗ SP (γ Pµ). (7)

Note the possibility of obtaining the SAB independently in each subspace SDP using (4).
Further, let the Hamiltonian be given and SAEB is looked for. By the modified prescription

the auxiliary operator Hµ = H ⊗ Iµ (in SD ⊗ H(µ)∗ ) is pulled down to the space Sγ µ by Bµ,
giving

H ↓
µ

def= Bµ†
HµB

µ =
∑
PQ

EP 0
Q0 ⊗

∑
pq β

Pµ†

p h
Pp

Qqβ
Qµ
q√

|ZP ||ZQ|
(8)

where

h
Pp

Qq =
(∑

φ,ψ

h
Ppφ

Qqψ |φ〉〈ψ |
)

⊗ Iµ (9)

are the (rectangular) submatrices in the decomposition Hµ = ∑
PQ

∑
pq E

Pp

Qq ⊗ h
Pp

Qq .
Commutativity of H with D(G) interrelates these matrices: for the transversal elements the

conditions [H,D(zPp )] = 0 give hPpQq = (δP (sP (zQq , z
P
p ))⊗ Iµ)h

Pp(z
Q
q )

Q0 , and (8) becomes

H ↓
µ =

∑
PQ

EP 0
Q0 ⊗

∑
pq γ

Pµ†
(sP (zQ

−1

q , zPp ))β
Pµ†

p h
Pp

Q0√
|ZP ||ZQ|

. (10)
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Since H ↓
µ commutes with the projector G↓(�µ), the vectors |µtµ〉0 should be chosen as the

eigenvectors of H ↓
µ from the range of S(γ µ): H ↓

µ |µtµ〉0 = εµtµ |µtµ〉0 and G↓(�µ)|µtµ〉0 =
|µtµ〉0. Finally, the expansion (4) gives the vectors |µtµm〉. It can be directly checked that the
obtained basis is the required SAEB of H , with the same eigenvalues εµtµ . Vectors |µtµ〉0 are
linear combinantions of the vectors from various Sγ Pµ , i.e. vectors of the SAEB mix the states
from different orbit spaces SDP .

In particular, if all the subgroups SP have common transversal Z, and Z is itself a subgroup
of G (i.e. when G = ZSP is a weak direct product), then sP (z−1

q , zp) = e for any p and q,
simplifying the form of the pulled down Hamiltonian:

H ↓
µ =

∑
PQ

EP 0
Q0 ⊗

∑
p

βµ
†

p h
Pp

Q0. (11)

Besides the single-electron approximation yielding the inductive multi-orbit structure
of the state space, the tight-binding model involves also the assumptions on the mutually
interacting neighbours. This Hamiltonian determining approximation is to be incorporated
in (10) and (11). Precisely, it is assumed that each atom (Pp) interacts with NP neighbours
(Pp; n) (n = 1, . . . , NP ) through coupling coefficients V Pn

ψφ between the involved orbitals
(the numbers of interacting neighbours and coupling coefficients are the same for all the atoms
from the same orbit). So, the Hamiltonian is

H =
∑
P

NP∑
n=1

|ZP |−1∑
p=0

δP∑
ψ=1

δ[Pp;n]∑
φ=1

V Pn
φψ |(Pp; n)φ〉〈(Pp)ψ | (12)

where [Pp; n] is the orbit to which the neighbour (Pp; n) belongs. Therefore, using in (9) the
matrix elements hPpφQ0ψ = ∑NQ

n=1 V
Qn
φψ δ

(Pp)

(Q0;n) (δij is the Kronecker delta) determined by (12), the
pulled down Hamiltonian becomes

H ↓
µ =

∑
Q

NQ∑
n=1

E
[Q0;n]0
Q0 ⊗

{
γ

[Q0;n]µ
Q(Q0;n)β

[Q0;n]µ†

(Q0;n)

( δ[Q0;n]∑
φ=1

δQ∑
ψ=1

V
Qn
φψ |φ〉〈ψ | ⊗ Iµ

)}
(13)

where

γ
Pµ

Qp = (|ZQ||Z[Q0;n]|)−1/2
∑
q

γ Pµ
†
(sP (zQ

−1

q , zPp )).

Finally, when there is a common transversal, being a subgroup in G, (11) reduces to the simple
sum over neighbours:

H ↓
µ =

∑
Q

NQ∑
n=1

E
[Q0;n]0
Q0 ⊗

{
β

[Q0;n]µ†

(Q0;n)

( δ[Q0;n]∑
φ=1

δQ∑
ψ=1

V
Qn
φψ |φ〉〈ψ | ⊗ Iµ

)}
. (14)

3. SWCN bands

Symmetry groups LC of chiral (n1, n2), and LZA of zig-zag (n, 0) and armchair (n, n) SWCTs
(C, Z and A tubes for short) are the line groups [4] given in the factorized and international
notation

LC = T r
qDn = Lqp22 LZA = T 1

2nDnh = L2nn/mcm (15)

with the translational period a = a0
√

3q/2nR. Here a0 = 2.461 Å is the honeycomb lattice
period, while n, q, p, r and R are defined in terms of n1 and n2. The parameters q̃ = q/n and
q are even since q̃ = 2 (mod 12), while n and p are even iff both n1 and n2 are even; also
q > 10 for the realistic tubes (having diameters D = a0

√Rnq/2/π > 3.4 Å).
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The factorized notation shows that these groups are weak direct products of the cyclic
groups generated by (Cr

q |a/q̃), Cn and U for LC , and additionally σx for LZA (the horizontal
axis U and vertical mirror plane σx define the coordinate system, as presented in the figure 1,
showing a fragment of honeycomb lattice which is rolled up to form the nanotube). Thus, their
elements are monomials

/(t, s, u, v) =
(
Cr
q

∣∣∣∣aq̃
)t
Cs
nU

uσ vx (16)

with t = 0,±1, . . . , s = 0, . . . , n− 1, u = 0, 1 and v = 0 for LC and v = 0, 1 in LZA.

Figure 1. The nearest neighbours of the C atom 0 = (000) are the atoms i = (000, i) (i = 1, 2, 3).
Perpendicular to the figure at ◦ is the U -axis taken as the x-axis of the coordinate system; σZ/A

x/h

represents the vertical (xz) and the horizontal (xy) mirror planes of Z and A tubes.

Each SWCT is a single-orbit system. The type of the orbit according to the classification
in [8], the stabilizer and the transversal are given in table 1. In all cases the transversal is the
group T r

qDn. It is used to enumerate the atoms: the transversal element /(t, s, u) = /(t, s, u, 0)
maps the orbit representative atom C000, with the radius vector in the cylindrical coordinate
system of figure 1

r000 =
(
D

2
, φ0, z0

)
φ0 = 2π

n1 + n2

nqR z0 = n1 − n2√
6nqRa0 (17)

into the atom Ctsu with the coordinates rtsu = (D/2, (−1)uφ0 + 2π(t/q + s/n), (−1)uz0 +
tna/q). Experimental data justified the plausibility of the simple tight-binding nearest-
neighbour model. Each C atom contributes one p⊥ (i.e. graphene pz) orbital |(tsu)〉 (the
notation is simplified: the capital and the Greek indices for orbits and interior space vectors,
taking on only the value 1, are omitted). The orbital |(tsu)〉 spans the (one-dimensional)
interior space carrying the trivial stabilizer representation δ(S) = 1(S), since the p⊥ orbital
is obviously invariant under the stabilizer elements. Thus in the total tight-binding space S,
being spanned by all these orbitals, the symmetry group acts by the induced representation
D(G) = 1(S ↑ G). The pulled down modified projector with the irreducible representation
D(µ)(G) (see the appendix) becomes S(D(µ)∗) = ∑

s∈S D
(µ)∗(s)/|S|, and the dimension of

its range gives the frequency number aµ of D(µ)(G) in D(G).
The model assumes the interaction with three nearest neighbours (see figure 1). Therefore,

the pulled down Hamiltonian reads

H ↓
µ =

3∑
i=0

ViD
(µ)∗†

(/(ti , si , ui)). (18)



Modified group projectors: tight-binding method 6567

Table 1. Orbits and neighbours of SWCTs. For C, Z and A tubes their line group, orbit type,
stabilizer and transversal group are in the columns G, O, S and Z. Then follow the parameters ti
and si (ui = 1) defining the nearest neighbours of the initial atom in the form (000; i) = Cti si1.

G O S Z (000; 1) (000; 2) (000; 3)

C LC a1 {e} T r
qDn t1 = −n2

n
t2 = n1

n
t3 = t1 + t2

s1 = 2n1 + (1 + rR)n2

qR s2 = (1 − rR)n1 + 2n2

qR s3 = s1 + s2

Z LZA b1 {e, Cnσx} T 1
2nDn t1 = 0 s1 = 1 t2 = 1 s2 = 0 t3 = 1 s3 = 1

A LZA d1 {e, σh} T 1
2nDn t1 = −1 s1 = 1 t2 = 1 s2 = 0 t3 = 0 s3 = 1

Here, /(ti, si , ui) is the transversal element which maps the initial atom into its neighbour
(000; i); it is given in table 1. By i = 0 in equation (18) the initial atom itself is included
(the diagonal term of the Hamiltonian); nevertheless, its contribution to the energy is reduced
to the additive constant V0, and hereafter it is omitted. Further, since the distortions of the
honeycomb lattice induced by rolling up are nearly homogeneous, all the remaining coupling
constants are taken to be equal: V1 = V2 = V3 = V (estimated between −2.7 and −2.5 eV).

Finally, using the irreducible representations from the appendix and the data from table 1,
the Hamiltonian and the modified projectors are pulled down and the results are presented in
table 2 (the projectors are given by the bases of their ranges in the last column). The general
dispersion relations for the bands of C, Z and A tubes are, respectively,

ε±
Em
(k) = ±|V |

√√√√ 3∑
i=1

(1 + 2 cosψi) (19a)

ε±
Gm
(k) = ±|V |

√
1 + 4 cos

ka

2
cos

mπ

n
+ 4 cos2

mπ

n
(19b)

ε±
Gm
(k) = ±|V |

√
1 + 4 cos

ka

2
cos

mπ

n
+ 4 cos2

ka

2
. (19c)

The angles used in (19a) are

ψ1 = −ka n2

q
+ 2πm

2n1 + n2

qnR ψ2 = ka
n1

q
+ 2πm

n1 + 2n2

qnR (20)

while ψ3 = ψ2 − ψ1. Substituting them in (19a) by

ψ̃1 = −k̃a n2

q
+ 2πm̃

2n1 + (1 + rR)n2

qnR ψ̃2 = k̃a
n1

q
+ 2πm̃

(1 − rR)n1 + 2n2

qnR (21)

(ψ̃3 = ψ̃2 − ψ̃1) one obtains the ε±
Em̃
(k̃) bands assigned by the helical quantum numbers k̃m̃

alternatively used in the literature. To find the standard basis |µtµm〉 it suffices to apply (4),
with βµtsu and |µtµ〉0 given in table 2. For example, the bands of the representations kE

A
m of

the Z tubes correspond to the symmetry adapted generalized Bloch states:

|kmA〉± = 1√|Z|
∑
ts

e−i( mπ
n

+ ka
2 )t (|(ts0)〉 ± eihkm |(ts1)〉) (22a)

|−k,m,A〉± = 1√|Z|
∑
ts

e−i( mπ
n

− ka
2 )t (|(ts1)〉 ± eihkm |(ts0)〉) (22b)

where hkm = arg{V (eiψ1 + eiψ2 + ei(ψ1+ψ2))}.
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Table 2. Bands and symmetry-adapted eigenvectors of the carbon nanotubes. For each irreducible
component D(µ)(L) of D(L) = 1(S ↑ L) its frequency number aµ, energy εµtµ , the transfer
operator βµtsu and the pulled down standard eigenbasis |µtµ〉0 (in terms of the SAB of tables A1
and A2) are presented. The matrices M2,K2,O2,M4,K4 and O4 are given in the appendix;

γ = arg(1 + 2ei ka2 cos πm
n
).

C aµ εµtµ β
µ
tsu |µtµ〉0

0A
:
m 1 V:(1 + 2e2i mπq ) :ue−im(rt+sq̃) 2π

q |0m:〉
πA

:
m 1 −V: :ue−i(m(rt+sq̃) 2π

q + tπ
q̃
) |πm:〉

kEm 2 (19a) K∗
2 (

kt
q̃
)M∗

2 (m
tr+sq̃
q̃

)Ou
2

|km〉±eihkm |−k,−m〉√
2

0A
:
m̃

1 V:(1 + 2e2i m̃πn ) :ue−im̃s 2π
n |0m̃:〉

π̃A
:
m̃

1 −V: :u(−1)te−im̃s 2π
n |π̃m̃:〉

k̃Em̃ 2 (19a) K∗
2 (

k̃t
q̃
)M∗

2 (sm̃)O
u
2

|k̃m̃〉±e
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4. Summary

The modified group projector technique is applied to find the SAB for the sum D(G) =
⊕P δ

P (SP ↑ G) of the induced interior representations δP (SP ) of arbitrary subgroups SP

of G. It is shown that this basis is the expanded basis |µtµ〉0 of the range of the pulled
down projector G↓(�µ) = ∑

P E
P 0
P 0γ

Pµ(SP ) in the low-dimensional auxiliary space (orbit
representative spaces multiplied by dual irreducible space). The same procedure is applied
when the standard basis, being also the eigenbasis of the Hamiltonian H , is looked for: then
in the range of G↓(�µ) the eigenvectors |µtµ〉0 of the pulled down Hamiltonian H ↓

µ are to be
found. For the tight-binding Hamiltonian the general expression for the operatorsH ↓

µ is found.
These results enable calculation of the crystal energy bands, by a transparent procedure.

The inputs are orbit stabilizers (these may be generally tabulated for the group with no
reference to the system, column 3 of table 1 in the example studied here) and the system-
dependent coupling coefficients and the data characterizing neighbours in terms of the group
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elements (columns 4–6 of table 1). The bands, automatically assigned by the full set of
symmetry quantum numbers, are found as the eigenvalues of the Hamiltonian pulled down
to the orbit representative subspace. The corresponding eigenvectors (the last column in
table 2) are straightforwardly transferred to the generalized Bloch eigenstates with the help
of the operators (6) (being the sum of the operators βµ given in table 2). Note that the
modified procedure enables us to find the SAEB using the subgroup generators only [3], i.e.
no summation over group elements appears in the procedure, since the completely symmetry
adapted states are used from the very beginning. In the standard prescriptions [1], one starts
with partially adapted states, e.g. Bloch functions adapted to the translational subgroup, which
enlarges the dimension of the eigenproblem (the elementary cell may contain a large number of
atoms from each orbit), while the remaining symmetry is independently analysed afterwards.
The physical contents of the operator γ PµQp from (13) is essentially geometrical: the different
transversals ZP and ZQ arrange the atoms on the corresponding orbits differently. Even when
the two orbits have the same transversal, since in general it is not a subgroup, the successive
elements are not arranged homogeneously. Thus, the sum over the orbit SQ involved in γ PµQp

averages relative positions of SQ and SP atoms. The terms in the sum are mutually equal
when the relative positions of the corresponding atoms on the two orbits are constant, provided
by homogeneous action of the same transversal when it is a subgroup. In any case, this
geometrical factor depends only on the involved pair of orbits, and can be calculated (and
tabulated) a priori, independently of the system under study.

The method is applied to find energy bands and corresponding eigenfunctions of the
carbon nanotubes [2]. Although the band dispersion relations have been already calculated in
the literature for both km [5] and k̃m̃ quantum numbers [6], only a part of the symmetry group
(screw axis and principal rotational axis) has been used, while the parities have been neglected.
Such incomplete band assignation can produce errors in studying various processes, since the
selection rules incorporating parities are more severe, forbidding some otherwise allowed
interband transitions. Also the generalized Bloch eigenfunctions have the most precise form
only when the full symmetry is used. The necessity for full symmetry group treatment is
enforced by the fact that the peaks of the density of states mostly correspond to the even or
odd states, i.e. to the representations with parities. An illustration of the profound importance
of this novel quantum number arises from conductivity analysis: it is known that the simplest
tight-binding model predicts conductivity in all the tubes (n1, n2) with n1 − n2 divisible by
three, since the pair of bands with the same m = mF is crossed at kF = 2π/3a if R = 3 or
kF = 0 if R = 1 (the Fermi level isEF = 0). On the other hand, the non-crossing rule prevents
crossing of bands having all the quantum numbers the same. Since U -parity characterizes
bands only at k = 0 and π , the bands differing only by this parity at k = 0 should attain a
secondary gap in any more accurate analysis (this gap must be finite for k �= 0, and continuity
implies the gap at k = 0). Looking at table 2 one easily concludes that only the armchair
tubes may be conductive, since only for them are there bands with the same m differing in
σx parity: these are the bands with m = 0, n. Finally, one checks that for mF = n the bands
corresponding to kE

A
n and kE

B
n indeed cross (at kF = 2π/3a). Of course, this method can be

easily performed for the less simplified model, where the coupling coefficients are not mutually
equal. Then the dispersion relation (19a) is generalized to

ε±
m(k) = ±

√∑
i

(
V 2
i + 2

V1V2V3

Vk
cosψk

)
. (23)

The band crossing appears now only for the armchair tubes, when V1 = V2 < V3 (again
mF = n). Further advantages of the band assignation by the complete set of quantum numbers,
e.g. influence on the band topology and density of states, will be analysed elsewhere.
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Table A1. Irreducible representations of LC classified by the km and k̃m̃ quantum numbers. For
the irreducible representations denoted in the first column, possible values of k and m (k̃ and m̃)
are given in the second column, and then the matrices of the generators follow. Finally, the SAB
is given in terms of quantum numbers. Only for integer m = n/2, q/2,−p/2, (q − p)/2 do the
corresponding representations appear. (*) k = 0 withm ∈ (0, q2 ), and k = π

a
withm ∈ (− p

2 ,
q−p

2 )

and k ∈ (0, π
a
) with m ∈ (− q

2 ,
q
2 ].
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q +k a
q̃
) eim 2π
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a
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2
,
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2

kEm (*) M2

(
mr

q̃

)
K2

(
k

q̃

)
M2(m) O2 |km〉

|−k,−m〉
k̃A

:U

m̃
k̃ = 0, q̃

π

a
, m̃ = 0,

n

2
eik̃ a

q̃ eim̃ 2π
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k̃Em̃ k̃ = 0, q̃
π

a
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(
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n

2

)
K2

(
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q̃
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(

0, q̃
π
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(
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2
,
n

2

]
|−k̃,−m̃〉

Table A2. Irreducible representations of LZA classified by the km quantum numbers. For the
irreducible representations denoted in the first column allowed values of k and m are given in the
second column, and then the matrices of the generators follow. Finally, the SAB is given in terms

of quantum numbers. Only for n even does πE:U

n/2 appear.
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Appendix. Irreducible representations of LC and LZA

There are two physically based classification of the irreducible representations of the non-
symorphic line groups (such as the considered ones), differing in the quasi-momenta used:
quantum numbers labelling representations may be either k andm of linear and angular quasi-
momenta, or k̃ and m̃ of helical (includes linear and a part of angular) and remaining angular
momemeta. As for the C tubes, both are used in the literature (see e.g. [5] for km and [6] for
k̃m̃ classification), while for the Z and A tubes only the former, as has been done in this paper.
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Note that m is not a conserved quantum number, since it emerges in the isogonal point group:
it is not a subgroup of the non-symorphic symmetry group.

Due to the U -axis in LC and LZA the linear quasi-momentum k runs over the irreducible
domain [0, π/a] (and k̃ ∈ [0, π̃ ] with π̃ = q̃π/a), being half of the Brillouin zone. In its
interior the representations are grouped in the k-series differing by m (or k̃-series differing by
m̃). At the boundaries some representations of LC have U -parity quantum number :U = ±1
denoted as the superscript +/−. As for the group LZA the superscript +/− stands for σh-
parity (with respect to the horizontal mirror plane σh = Uσx) :h = ±1, except for the
representations πE

±
n/2, where it corresponds to :U = ±1; additionally, some of the k-series

and boundary representations of LZA have a quantum number of σx-parity:v = ±1, denoted
by A/B, respectively. The representations are given by the matrices of the group generators.
In the tables In and On stand for n-dimensional diagonal and off-diagonal unit matrices
respectively; the two-dimensional diagonal matrices are M2(m) = diag[eim2π/n, e−im2π/n],
K2(k) = diag[eika, e−ika], while M4(m) = I2 ⊗ M2(m), K4(k,m) = K2(k) ⊗ M2(m) and
V4 = I2 ⊗O2 are four dimensional.
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